Development of SFR Fuel Cladding Tube Materials

International Conference on Fast Reactors and Related Fuel Cycles (FR09), Kyoto, Japan 8 December 2009

Sung Ho Kim, Chan Bock Lee, and Dohee Hahn

KAERI Korea Atomic Energy KAERI Research Institute

Outline

I.1 Fuel Rod and Assembly

I.2 Core Environment & Design Requirements for Cladding Tube

I.1 Fuel Rod & Assembly

I.2 Core Environment & Design Requirements

Core Environment

- Inlet temperature : 370°C
- Outlet temperature : 545°C
- Fuel temperature : 650°C
- Fast neutron fluence : 200 dpa
- Hoop stress (end of life) : 70MPa
- 3-4 cycles (1 cycle : 18 month) : 50,000 hrs

□ Design Requirements of Cladding Tube

- Thermal strain : < 1%
- Total strain : < 3%
- Swelling : < 5%

SFR Fuel Cladding Development Program

II.1 Target

II.2 Long-term Development Plan

II.3 Short-term Development Plan

II.1 Target

Development of new cladding having higher creep rupture strength Development of barrier materials for applying to cladding tube

	KALIMER 600	New Target				
Max. allowable temp. of cladding tube	630°C	Above 650°C				
Max. fluence of cladding tube	200 dpa	250 dpa				
Limitation in cladding temp. by eutectic melting (°C)	650°C – 700°C	No. (Apply barrier to cladding tube)				

II.2 Long-term Development Plan

II.3 Short-term Development Plan

Alloy Design for SFR Fuel Cladding Materials

III.1 Evaluation of Minor Alloying Elements
III.2 Strengthening Mechanism of FM Steels
III.3 Alloy Design
III.4 Fabrication Process

III.1 Evaluation of Minor Alloying Elements

Group	1	2 	3	4	5	6	7	8	9	10	11	12	13 III	14 IV	15 V	16 VI	17 VII	18 VIII
Period																		
	hydrogen			1) Cr			5) B											helium
4	1			2) Mo, W	, Re		6) Si, Mn											2
'	н			3) V, Nb,	Ta, Ti		7) Ni, Cu	, Co										He
	1.0079		_	5) C, N			8) Al, P, S	S								_		4.0026
	lithium	beryllium							-				boron	carbon	nitrogen	oxygen	fluorine	neon
2	3	4											5	6	7	8	9	10
2	Li	Be											в	С	Ν	0	F	Ne
	6.94	9.01218											10.81	12.011	14.0067	15.999	18.998403	20.18
	sodium	magnesium											aluminium	silicon	phosphorus	sulfur	chlorine	argon
3	11	12											13	14	15	16	17	18
	Na	Mg											AI	Si	Р	S	CI	Ar
	22.98977	24.305							-				26.98154	28.086	30.97376	32.07	35.453	39.948
	potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	к	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.0983	40.08	44.95591	47.867	50.9415	51.996	54.93805	55.84	58.9332	58.693	63.55	65.4	69.723	72.6	74.9216	79	79.904	83.8
	rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
5	37	38	39	40	41	42	43 T-	44	45	46	47	48	49	50	51	52	53	54
	RD	Sr	T	Zr			10	Ru	RII	Pu	Ag	Ca	III	50	50	Te	1	Ne
	00.400	07.02 harium	55.5058 E7 74	91.22	52.5064	55.54	[97.9072]	101.1	isidium	50	107.000	112.41	114.02	110.71	121.76	127.0	126.5045	131.3
	55	56	*	72	72		75	76	77	79	70	en ercury	91	1eau 92	93	9/	25 QE	96
6	Ce	Ba		/ 2 Llf	73 Ta	. /4 W	Po	06	lr.	70 Df	7.5 A.u	- 00 ⊢a	TI	Dh	Bi	Do	Δ5 Δ+	Dn
	132,9054	137.33		178.5	180,9479	183.84	186.207	190.2	192.22	195.08	196,9666	200.6	204.383	207.2	208,9804	[208.9824]	[209.9871]	[222.0176]
	francium	radium	89-103	rutherfordiu	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtiu	roentaenium	ununbium	ununtrium	ununquadiu	ununpentium	ununhexium	ununseptium	ununoctium
	87	88	**	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra		Rf	Db	Sa	Bh	Hs	Mt	Ds	Ra	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
	[223.0197]	[226.0254]		[263.1125]	[262.1144]	[266.1219]	[264.1247]	[269.1341]	[268.1388]	[272.1463]	[272.1535]	[277]	[284]	[289]	[288]	[292]	[291]***	[294]***

Evaluation

of base data

- 1) Cr: Precipitation hardening
- 2) Mo, W, Re: Solid solution hardening
- 3) V, Nb, Ta, Ti: Precipitation hardening
- 4) C, N: Precipitation hardening
- 5) B: Stabilization of precipitates
- 6) Si, Mn: Stabilization of precipitates
- 7) Ni, Cu, Co: Stabilization of microstructure
- 8) AI, P, S: Stabilization of microstructure
- 11 FR09, Kyoto, 7-11 December 2009

Crystal structure/atomic radius

- valence/Electronegativity/MP
- nucleus embrittlement
- Formation of δ-ferrite
- Phase transformation temp. (M_s, A₁)

III.2 Strengthening Mechanism of FM Steels

- Effect of B addition
- Optimization of C and N
 Optimization of Nb, V
 Effect of Ta addition
 Effect of Zr and Ti

□ Chemical compositions

ID	Nominal composition	Remark
А	9Cr-2W-Nb-Ta-V1	Effect of V concentration
В	9Cr-2W-Nb-Ta-V2	"
С	9Cr-2W-Nb-Ta-V1-C1-N1	Effect of C and N concentration
D	9Cr-2W-Nb-V-Ti	Effect of Ti
Е	9Cr-2W-Nb-V-Zr	Effect of Zr

□ Specimen manufacturing

- Vacuum Induction Melting (Ingot size : 30kg)
- Hot rolling (1150°C)

Heat treatment

- Normalizing : 1050°C x 1 hour
- Tempering : 750°C x 2 hours
- Air cooling was applied during all the heat treatment.

III.4 Fabrication Process

Cold rolling and heat treatment

- Plate : normalized at 1050°C for one hour, tempered at 550°C for 2 hours
- Cold rolled from 4 mm to 1 mm
- One time cold rolling :
 - Reduction ratio : 75%
 - Heat treatment : 750°C for 30 min
- Three times cold rolling
 - Reduction ratio : 33% or 44%
 - Heat treatment : 750°C for 10 min

IV.1 Phase Equilibrium Diagram IV.2 Mechanical Properties

IV.1.1 Phase Equilibrium Diagram

□ Phase equilibrium of Alloy A & B

- Alloy A : high vanadium steel
- Alloy B : low vanadium steel
- Equilibrium phases : M₂₃C₆, MX, BN and Laves phase
- A_{e1} temperature : 805°C and 780°C in alloy A and B
 - Alloy A can be tempered at higher temperature.
 - More stable precipitates may be formed.
 - Creep resistance of Alloy A may be improved.
- V-rich MX phases
 - Formed in Alloy A
 - Not appeared in Alloy B

W(C)=7E-4, W(SI)=7E-4, W(MN)=4.44E-3, W(NI)=4.74E-3, W(N)=6E-4, W(B)=1.6E-4, P=1E5, N=1 · 2-T-272 45 DDM/DN UD4 Austenite Ferrite 1-T-273 15 BPW(BCC A2) 45 4:T-273.15, BPW(FCC A1#2) 6:T-273.15,BPW(M23C6) A_{e_1} 40 7:T-273.15.BPW(LAVES PHASE C14 Laves 35 **Mass fraction** A_{e3} 30 Delta Alloy A 25 20 15 M23C6 10 MX 5⊸ 10⁻³ 600 700 800 900 1000 1100 1200 1300 300 400 500 Temperature, °C

W(CR)=9.33E-2, W(MO)=5.21E-3, W(W)=1.95E-2, W(V)=2.96E-3, W(NB)=5.2E-4,

IV.1.2 Phase Equilibrium Diagram

□ Phase equilibrium of Alloy C

- Carbon concentration : decrease
- Nitrogen concentration : increase
- A_{e1} temperature : 780°C
- Mass fraction of $M_{23}C_6$ precipitates : reduce in Alloy C
- Mass fraction of MX precipitates : increase in Alloy C

17 FR09, Kyoto, 7-11 December 2009

IV.2.1 Tensile Properties

□ Tensile test results

- Tensile test temperature : 650°C
- -V effect
 - Low V alloy : higher yield and tensile strengths
- -C & N effect
 - Low C & high N alloy : higher yield and tensile strengths
- Ti of Zr effect
 - Zr addition : more effective in improving yield and tensile strengths

IV.2.2 Creep Properties

Creep rupture test results

- Creep test temperature : 650°C
- Applied stress : 120 ~ 150 MPa
- -V effect
 - Low V alloy : higher creep rupture strength
 - · Perform the creep test at low stress levels
- -C & N effect
 - Low C & high N alloy : lower creep rupture strength
- Ti or Zr effect
 - Zr bearing alloy : higher creep rupture strength
- 19 FR09, Kyoto, 7-11 December 2009

IV.2.3 Creep Rupture Elongation

□ Creep rupture elongation

-V effect

• High V alloy : higher creep rupture elongation

- C & N effect
 - Low C & high N alloy : lower creep rupture elongation
- Ti or Zr effect
 - Similar creep rupture elongation
- Creep rupture elongation : $15 \sim 25\%$, not changed with applied load

V.1 Microstructure

V.2 Mechanical Properties

21 FR09, Kyoto, 7-11 December 2009

V.1.1 Microstructure - Matrix

□ Matrix microstructure

- Mother plate
 - Normalized at 1050°C for 1 hour
 - Tempered at 550°C for 2 hours
 - Typical tempered martensite structure
 - I ath width · 200 nm
- One time cold rolling
 - Reduction ratio : 75%
 - Tempered at 750°C for 30 min
 - Fully recrystallized ferritic structure
 - Excess strain energy stored through cold rolling
 - Average grain size : 3 um
- Three times cold rolling
 - Reduction ratio · 33-44%
 - Tempered at 750°C for 10 min
 - Recrystallized ferritic structure was observed.
 - Strain energy accumulated through first and second cold rolling : disappeared by intermediate heat treatment

(a) Normalized (b) One time cold rolling (c) Three times cold rolling

Korea Atomic Energy Research Institute

V.1.2 Microstructure - Precipitates

□ Precipitates microstructure

- Mother plate
 - M₂₃C₆ and V-rich MX fully dissolved
 - Tempering temperature was low enough to avoid the formation of $M_{23}C_6$ and V-rich MX
 - Nb-rich MX phase
 - 85Nb-9V-4Cr-2W (at%)
- One time cold rolling
 - Nb-rich MX phase : originally contained in the steel before cold rolling
 - M₂₃C₆ phase : 68Cr-25Fe-3Mo-4W (at%)
 - V-rich MX phase : 65V-12Nb-15Cr-8W
 - Size of V-rich MX : less than 100 nm
 - Size of M₂₃C₆ : relatively large
- Three times cold rolling
 - Nb-rich MX, V-rich MX, M₂₃C₆ phase
 - Fine and uniform precipitates
 - High density of dislocations: provide favorable nucleation site for precipitates

V.2.1 Microhardness

Microhardness test results

- Mother plate : 350 Hv
- One time cold rolling
 - Cold rolling : 419 Hv, heat treatment : 175 Hv
 - Significant softening : fully recrystallized grains
- Three times cold rolling
 - 1st cold rolling : 391 Hv, heat treatment : 344 Hv,
 - Heat treatment recovered mechanical properties degraded during cold rolling.
 - 2nd cold rolling : hardness increased, heat treatment : hardness decreased
 - Final cold rolling & heat treatment : 246 Hv
 - · Formation and growth of recrystallized grains

V.2.2 Tensile Properties

□ Tensile test results

- Tensile test temperature : 650°C
- One time cold rolling
 - Yield, tensile strengths and elongation : 201 MPa, 235 MPa, and 35%
 - Fully recrystallized structure
- Three times cold rolling
 - First heat treatment : 446 MPa, 544 MPa, and 17%
 - Second heat treatment : yield and tensile strengths slightly reduced, elongation increased
 - Third heat treatment : 368 MPa, 405 MPa, and 23%
 - Partially recrystallized structure and finely distributed precipitates

Summary

□ Alloy Design and Evaluation

- Increase of V concentration caused the increase of mass fraction of V-rich MX particles.
- The high V steel showed lower yield, tensile and creep rupture strengths.
- The high N and low C steel showed higher yield and tensile strengths, but revealed lower creep rupture strength than the low N and high C steel.
- The Zr addition was more effective than Ti addition in terms of yield, tensile and creep rupture strengths.

□ Fabrication Process

- The 75% cold rolling and the final heat treatment led to a transition to a fully recrystallized structure with a formation of large inhomogeneous $M_{23}C_6$ carbides, resulting in a significant softening.
- However, three times cold rolling with an intermediate heat treatment after each cold rolling led to the formation of fine and uniform M₂₃C₆ carbides in a partially recrystallized structure, thus providing an enhanced tensile strength. These fabrication processes could be effective for fabricating a high strength ferritic/martensitic steels.

